290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page l73$

Chapter 7

Programmers and
Systems Analysts

Ethical Dilemmas in this Chapter:

m Coding Practices

m Code Maintenance

m Code Review

m Code Design and Testing
m Programmers and Viruses

m Programmer Security Responsibility

173

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 17%

174 Chapter 7 *« Programmers and Systems Analysts

Introduction

This chapter covers the ethical issues that programmers and analysts may
encounter. We discuss the ethical dilemmas resulting from coding practices,
reviewing code, malicious attacks, secure programming, software deployment,
code design, and program testing.

We start by defining the roles of programmers and analysts. Programmers and
analysts are the information technologists who develop computer applications
utilizing various programming languages and macros.

In this chapter, we refer to programmers and system analysts in various ways
depending on the role they are playing, including application and software devel-
opers. It is important to know that they all perform the same information tech-
nology (IT) role with slight variations. For example, a software developer is a
programmer that focuses on the creation of a software product that can then be
packaged and sold. A systems analyst in some cases is someone who writes code
for the operating system such as UNIX shell scripting.

Programmers work oft of design specifications. Specifications are detailed
instructions written by business analysts or system users, which define the
requirements for a given application slotted for development. The programmer
takes these requirements and converts them to a program design.

There are four primary phases of software/application development: design,
plan, prototype, and implement. If any of these steps are skipped, a problem may
develop. This chapter touches on and provides scenarios of ethical matters for
each phase of the software life cycle development process. We also discuss
common programmer ethical dilemmas.

Coding Practices

This section discusses ethical quandaries regarding bad code, weak code, the cor-
rect use of system memory, utilizing system resources, redoing code due to busi-
ness rule changes, staying current with coding best practices, and pseudo code.
This will give you a thorough understanding of the ethical issues programmer’s
face in their general coding practices.

The primary ethical concerns of programmers result from either lack of
proper communication between business users and developers, insufficient
knowledge in their proclaimed area of programming expertise, simple boredom
or laziness, and most common of all, a lack of time allocated for proper project
completion.

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 17%

Programmers and Systems Analysts « Chapter 7 175

Bad Code — Whose Problem is It?

Bad code 1s code that is written in a manner that does not fulfill the business or
technical requirements defined by any given project. Writing bad code can mean
several things. Sometimes it is just a matter of not taking fully into account the
complexity of the specifications. At other times, developers are simply working
off of patterns that they have used successfully in the past that may not neces-
sarily apply to the current project. Bad code can also result from rushed deadlines
and production pressures. Finally, and worst of all, bad code can come from
developers who do not have the technical expertise to get the job done, but
somehow managed to bluff their way through the technical interview. The
choice of how to handle them falls into the hands of the programmer. The fol-
lowing scenario addresses reworking bad code that was written by a coworker
and friend:

You are performing software development with a computer graphics group.
The team 1s motivated to produce an award-winning product for the next
release. However, one member of the team, “Allen,” produces dubious code and
seems incapable of doing better. The project schedule is in serious jeopardy. One
of your fellow programmers, “Rick,” suggests that you and he just rewrite the
code written by the weak team member Allen, so it works properly. He says that
no one need ever know that the two of you rewrote Allen’s code to make it
work properly. Is this type of cover up performance ethical?

Conservative Rewriting programs for someone else on your team is
inappropriate and slows production down, wasting your time and the com-
pany’s time. You should sit down with management and explain that this
one person is significantly affecting the goals of the department and com-
pany. You should never do someone else’s work for them, no matter how
well meaning your intentions.

Liberal Your desire to help the team and your friend is well intended and
may work as a one-time fix in this case. There is nothing wrong with
helping a friend out.You need to watch each other’s backs. You may need
help sometime in the future and he will owe you one.

In addition, you may also want to consider talking to Allen and encour-
aging him to brush up on his programming skills so that he is up to speed.
For Allen’s benefit, you should also tell him that you are making changes to
his code. This will ensure that he can respond appropriately if there are any

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 17%

Chapter 7 *« Programmers and Systems Analysts

questions directed to him in the future or any program maintenance work
that comes back to him. It will also help him learn how he should have
written the code.

It is a tricky business to help someone do their work without notifying
management. Expectations are set around a person’s performance; in

this situation you will create a false sense of Allen’s ability. If you really
want to fix the code, you should seek permission from the project leader

Working on a team brings to light many ethical issues. When you
cover up for someone else’s failings, it can put the team and project at
risk. However, there also needs to be a human element in business.

No one is perfect and any expectation of that is unrealistic. Most
people find it better to work in an environment where they feel sup-
ported rather than in a cutthroat environment where everyone plays the
blame game. How far you take that support is up to you. In addition,
how often you point the finger is up to you as well.

176

SUMMARY
to do so.

o o

(@] (@)

o o

(@] (@]

o o

o o

Microsoft Windows NT

Does it infuriate you when a PC user calls and says that their machine is
running slow? The first thoughts that come to mind would be a memory
issue or a network card problem, if hooked to a network, or disk space
problem. But after investigation, you find that the real problem is
Windows NT’s baseline OS doesn’t include defrag software. The end user
has to buy something like Disk Keeper to rid the hard drive of severe frag-
mentation. Also, even with Disk Keeper you have to run the software
repeatedly and it still doesn’t fully rid the hard drive of fragmentation.
Yes, Windows NT was far better from a security standpoint than Windows
95/98, but get real; even these baseline operating systems included some
form of defrag software. It would be like using all your money to buy
what you thought was reliable transportation but it couldn’t even get you
out of your driveway.

Jeff Payne

GIAC Certified

IA Analyst Inc.

www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 177$

Programmers and Systems Analysts « Chapter 7 177

Weak Code - Is it Ever Okay?

Weak code falls into the category of laziness, carelessness, or results from over-
working a developer. In the following circumstance, weak coding practices are
due to being overworked, which commonly occurs in application development
environments that have unrealistic deadlines generated by the business users or
management. In the following two scenarios, consider how you would respond
to weak code.

You are tired from working a week of consecutive ten-hour days to get your
project done and decide to cut corners wherever you can, which results in
writing lazy code that will just get by. The code you end up writing will work
fine and does not have any security weaknesses, but you know you could write it
much better and utilize computing resources better. Is it okay to write weak
code when you do not have the time to do the job better because you are being
grossly overworked?

Conservative Your company pays you good money to create the
optimum solution, not the minimum optimum solution, for your develop-
ment eftorts. Cutting corners never pays oft and you will probably have to
come back and rewrite your weak code anyway. Dig deep and do the job
correctly, even if you are tired. You will be glad you did. Nothing feels better
then knowing you did a job to the best of your ability.

Liberal When push comes to shove, it does not make any difference what
kind of code you write as long as it gets the job done eftectively, within
budget, and on time; that is the bottom line for management. That is what
you are being paid for, not to create a code masterpiece. There is no need to
spend three hours working on code that you could write in one just to
make it fully optimized. If you always did that, you would never get any
projects done on time.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 17%

178 Chapter 7 *« Programmers and Systems Analysts

SUMMARY

In all areas of business, we are faced with the dilemma of doing the job
versus doing the job to the best of our ability. Doing the job right tends
to pay off in the end, but not always if you miss your deadline. Finding
an ethical balance that you can live with between giving it your all and
pulling projects in under deadline will give you peace of mind in the
work place.

Correct Use of Memory — Fixed Versus Dynamic

Memory allocation is an important matter for lower level programmers such as
C, Java, and UNIX developers. Properly using system memory can be an ethical
issue because wasting memory costs the IT department money and can interfere
with other developers’ work. Consider the following scenario:

You are developing a program for an accounting firm, which draws data from
an accounts database table. The size of the data you extract may vary depending
on the records for any given month. Is it unethical or just poor coding practice
to waste memory by declaring the maximum possible size rather than dynamic
allocation?

Conservative If you are wasting memory, you are wasting system
resources, which results in wasting the company’s money. Any act of wasting
money is unethical. How would you feel if it was your money and someone
was not handling it with utmost care and respect? You would not want
someone else to waste your hard-earned cash.

Liberal 1n this case, maybe you did not choose the most optimum pro-
gramming solution, but this is really no big deal compared to today’s hard-
ware system resources. We are talking about worrying about a fraction of a
cent here. If every programmer had to worry about these matters, no work
would ever be done.

SUMMARY

Programmers are hired for their expertise in developing software. The
allocation and use of memory is entrusted to them. If they remain within
a certain range of acceptability, this should not become an issue in most

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 179$

Programmers and Systems Analysts « Chapter 7 179

cases. Everyone takes shortcuts from time to time. Many of these short-
cuts are generated because the developers are under aggressive and
sometimes impossible deadlines. Other times, these shortcuts are bad
habits that they have developed over time. In either case, it is worth-
while to consider both extremes and find out what you feel comfortable
with as an application developer. Maybe you have never considered how
you waste money through your coding practices. It is worth some
thought.

Ethical Use of System Resources —
Are You Using or Abusing the Privilege?

You are a computer genius working at a securities company and can write code
that will bump up the speed of the host computer while it is performing com-
plex trading calculations. Is it ethically appropriate to alter the speed of a com-
puter, which will be running your application?

Conservative You need to be very careful when altering the system
resources of a machine that will run your software. It is not recommended
to reallocate the fundamental core speed of host machines. This practice is
unacceptable due to the risk imposed on the host machine. Think about the
fact that if there is the slightest problem or security weakness in the software
that you have developed, you can impose serious damage to the host com-
puter. Let the client upgrade their hardware on their own. Do not interfere
with this type of dynamic memory boost, even for the client’s benefit.

Liberal If you know how to write code that speeds up the processing
power of the host machine, you should review it with your technical project
leader and, if they approve, go for it. This will give your product a significant
edge on all of your competitors. The clients will most certainly appreciate
the additional speed and processing power. Just be sure you thoroughly per-
form error handling and penetration testing on the product before it is
released to the general population.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 18<¢

180 Chapter 7 *« Programmers and Systems Analysts

SUMMARY

Altering system resources on a host machine is not against the law or
necessarily immoral, but it could result in problems, depending on the
structural integrity of the software manipulating the client resources.
You will see the negative results of this ethical dilemma if your software
has a bug that permanently alters a host machine or makes is suscep-
tible to a malicious attack.

Redoing Code Due to
Management Changes — Should You do It?

Often on IT projects, the technical team is required to get started prior to when
the management team has actually completed the full project planning.
Sometimes management will notify the programmers that the coding standards
or even the planned software project itself has changed to implement new busi-
ness rules. This type of business requirement change results in reworking code
and sometimes tossing out weeks or months of development work. The following
issue addresses this problem.

You are halfway through a large program that will be used by the order ful-
fillment department of a fiber-optics company. Your I'T manager implements new
standards for everyone to follow. Do you go back and rework everything you
did? Do you start the standards from the point you are at? Do you say forget it
and use them on the next project?

Conservative If management has provided you with standards, it is your
responsibility to utilize them to the best of your ability. Go back and try to
update the code you have already written to meet the current standards. If
you cannot update it, you must rewrite it. This is part of the job. Roll with
the punches. Be sure you speak to your manager so that they know that
reworking and rewriting your earlier work will set the project back in terms
of the aggressive deadline.

Liberal just because management did not perform their job correctly is no
reason for you to suffer the consequences. After all, if the project is not
completed on time because of this change, you will be the one to eat it, not
management. Just implement the standards from the point you are at in

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 18$

Programmers and Systems Analysts « Chapter 7 181

development and do not worry about the work you have already done.You
will never get the project done on time if you back track at this point.

In addition, if implementing the new standards throws the project oft
too much because you cannot use existing libraries, do not implement the
standards at all. It is not your fault they were tossed into the mix at this late
phase of the development effort.

SUMMARY

One constant in application development is that things are always
changing. Operating systems are upgraded that require reworking old
code, business rules change, and IT projects are often dumped or
redesigned in mid-development. Learning to adapt to change is essential
for programmers and analysts.

Staying Current with Coding
Practices — What if It's Not in Your Schedule?

Most of your development team has remained current with recent coding lan-
guages, practices, standards, and changes in the development industry. You do not
have time for the extra education required to stay current. Do you feel it is ethi-
cally correct to remain in the dark when it comes to the current coding stan-
dards and practices?

Conservative Part of a programmer’s job is to stay current with the most
recent developments in I'T. This includes educating yourself on the most up-
to-date compilers, programming techniques, secure coding practices, and
standards. It is a given in the development industry that you will grant your-
self a continuing education in your job role and potentially expand beyond
your area of expertise. Therefore, it is not acceptable if you fail to keep
yourself informed of the best and current means to perform your job as an
application developer.

Liberal If your company does not pay you to take educational seminars
and provide you with up-to-date resources, it is not your responsibility to
do so on your own. Granted, you want to keep your skills fresh and mar-
ketable, but there is only so much time in the day to realistically do this.
Educational seminars can be costly if you have to foot the bill yourself.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page lS%

182 Chapter 7 *« Programmers and Systems Analysts

Spending all of your time working or in school will consume your life. That
is not a fair or a happy way to live.

SUMMARY

Keeping up to date on recent software tools and development practices
requires a significant amount of time on the part of the programmer.
Some programmers do this automatically because they are excited about
new technology in their area of expertise. Others may simply not have
the time because they carry a large workload at the office. A third cate-
gory of programmers may simply not want to update their skills and
coast for as long as they can. Find out what type of programmer you are
and if you feel good about it.

Commenting Code —
When is It Okay Not to Do It?

The practice of commenting code is important for the other developers who
will later maintain, fix, update, or rewrite the code you create. Commenting
practices vary from developer to developer. Some programmers hate com-
menting, and therefore never do it. Others want to make themselves indispens-
able and do not comment because they want the work returned to them. Others
comment consistently. Consider the following scenario:

You are a top coder at your company and you never comment your code
because it takes too much time. This is primarily to keep up with what you are
required to produce. Is it unethical to fail to comment code due to a lack of time?

Conservative Most programming standards dictate that developers must
provide code comments. This is sensible because it allows for easier updating
of the program and helps others understand what the initial developer was
doing. Programmers should make commenting code a standard duty. If they
do not, they are intentionally making it harder for those that will maintain
their code. Saying that it takes too much time is not an excuse. In the long
run, it will waste time for the business.

Liberal The bulk of programmers do not comment their code. In most
cases, if there is a problem with code a developer has written, they will fix it

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 18¢

Programmers and Systems Analysts « Chapter 7 183
themselves. When faced with the choice to finish a project on time or com-
ment the code and run over schedule, the wise choice is to get the job done

quickly.

SUMMARY

Aggressive deadlines in development result in an array of ethical
dilemmas. The above example is one such circumstance. It is always best
to weigh the advantages against the disadvantages when making a
determination such as commenting code.

Omitting Code Comments for Job
Security — Should You Play the Game?

You are a top coder at your company, and you never comment your code
because you want to ensure job security by making it difficult for others to
understand. Is it unethical to avoid commenting your code for the purposes of
job security?

Conservative Failing to comment code to ensure job security is defi-
nitely not ethical. It is also a form of sabotage. Making things hard for the
company and team due to your own insecurity is just wrong. Any practice
that reduces the quality of your work to gain job security is unethical.

Liberal Office politics are tricky and sometimes you do not have a choice
but to play the game. If you do not play the game, you usually lose. The eth-
ical people are not always the ones on top. Unfortunately, it is usually the
reverse. People who know how to play the game are the individuals calling
the shots. Therefore, if you write excellent code, it is smart in some cases to
ensure your job security by making it a little harder for others to decipher
your work. Additionally, in this way no one else can take credit for your work
because they would be required to speak to you in order to understand it.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 18%

184

Chapter 7 *« Programmers and Systems Analysts

SUMMARY

Job security is a very interesting ethical matter. Most people build a little
job security into their jobs. Some people in IT are terribly bad at playing
politics so they use their technical knowledge as a non-political strategy
to stay in the game.

Pseudo Code — Is It Worth Your Time?

Pseudo code is the step-by-step description representing future code that will be
written in its place. Pseudo code is not often practiced outside of the computer
school environment. Take into account the following scenario:

You never pseudo code even though it is company policy. A non-technical

manager using methodology books wrote the company coding policy and most
of the technical people think the corporate policy makes no practical sense. You
think pseudo coding is a complete waste of time, and therefore, you are saving
your company time and money by not pseudo coding. In this case, is it appro-
priate to go against company policy?

Conservative In most cases, you should follow the standards set by the
company. Standards are written by experts and are tried and true. In a few
cases, it 1s useful to address unnecessary standards with your manager. You
should sit down with your manager and explain the pros and cons of
pseudo code. Tell them that you can save the company time and money by
not adhering to this standard. Explain why it is unimportant technically and
that it will not aftect the quality of your work.

Liberal There is no need to make a big deal out of a standard such as
pseudo code, which no one in the industry does anymore. Do not pseudo
code. There are plenty of standards that are not followed, because the devel-
opment team thinks the standards document is a joke. Most programmers
have honestly not even reviewed the standards because they did not want to
waste their time. At least you know what they are.

This is a case of realism versus textbook (at best). In theory, all kinds of
standards and practices are important, but in real life, development efforts
with real deadlines and most standards and methodologies do not apply. This
is especially true if the standards were written by non-technical personnel.

Www.syngress.com

o

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 18%

Programmers and Systems Analysts « Chapter 7 185

SUMMARY

Often, developers are faced with long drawn out methodologies and
standards that, if followed, would prevent all projects from ever being
completed. Given enough time to elaborate standards and methodolo-
gies is beneficial to software development, but with the deadlines
imposed on programmers they are forced to find the best possible solu-
tion somewhere in the middle. Senior management does not always
understand this.

Code Maintenance

Maintaining code poses difterent ethical situations than the original generation of
code. Programmers who maintain code have the job of going through existing
code and making minor adjustments due to changes in the production environ-
ment, database, business rules, or overall system architecture. The next two issues
involve modifying the original code of a program.

Modifying the Original Secure Design
of a Program — Is this Ever Appropriate?

You are a maintenance programmer working on a program that has a security
model with bounds checking.You add a new function that does not perform
bounds checking. Is it ethical for a maintenance coder to modity the original
secure design of a program in this manner?

Conservative When performing maintenance work you must stick with
the existing design and security model of a given program. It is never
appropriate to add functionality that does not adhere to the original secure
design of the system.You are wasting your and the company’s time.

Liberal It is not always necessary to following existing secure design con-
cepts of a program when you are simply adding functionality. The overall
secure structure of the program should be enough to maintain its own
integrity, even if you do not add bounds checking to your new function.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 18%

186 Chapter 7 *« Programmers and Systems Analysts

SUMMARY

Adhering to a program’s secure structure when you are doing mainte-
nance work is primarily dependent on the type of maintenance work you
are doing. If the new function overrides or alters the functionality of the
program altogether and you do not implement bounds checking, you
may be ethically wrong. However, if the additional function you are
adding has no effect on the overall security of the program, there may
not be a need to address it.

Affecting the Overall Quality of
a Program — What is Acceptable?

Is it ethical for a maintenance coder to write a less quality add-on function than
the code written for the original program?

Conservative Continuation of quality is a requirement for maintenance
programming. Any additional code added to a program should have the
same level of quality.

Liberal The reality is that compensation for maintenance programmers is
far less than for the original developers, because they are often not as skilled.
Trying to match the quality of an existing program may not be realistic for
a maintenance programmer.

SUMMARY

Quality is important in the maintenance of existing applications; how-
ever, the resources on hand must be taken into account and an accept-
able quality assurance level must be set. Not all programmers are
phenomenal, and to set a standard for all work to match may be unreal-
istic. However, system security should never be the aspect of mainte-
nance code that is comprised for any reason.

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 187$

Programmers and Systems Analysts « Chapter 7 187

Code Review

Thus far in this chapter we have discussed standards and methodologies from the
point of view of the programmer. Now let’s take a look at it from the point of
view of the reviewer role.

The code review process occurs in three different ways: by a third party, by
coworkers, or by automated software. The process of reviewing code provides a
check and balance for development eftorts. A simple code review checks the
basic vulnerabilities of the program.The more complex security conscious code
reviews are referred to as penetration tests. These tests probe and attempt to pen-
etrate the security of the program and system in which it is running.

This section discusses lazy reviews, following standards, and automated
code review.

Lazy Reviews — Do You Do It?

Your team takes turns reviewing each other’s code on a monthly basis. You know
everyone writes decent code. Is it acceptable not to perform the review of your
team’s work if you do not have the time?

Conservative Absolutely not! A code review checks for more than just
good coding practices, it verifies the integrity and security of the system.
No one writes perfect code. It is important for every developer to have a
second set of eyes to review their work.

Liberal If your coworker has just created routine code that they could
write blindfolded, taking the extra time to review it when you already
know it is fine is a waste of time and energy. This is especially true when
you have so many other projects to focus on.

SUMMARY

Getting lazy reviewing code or just feeling it is not necessary could save
time or cause real damage. The complexity and priority of the project
that requires review plays a role in the necessity of a thorough review.
When the code to review is repetitive, maybe it is a waste of time to
check every line. But then again maybe not, that is for you to decide
under the unique circumstances of your job as programmer and code
reviewer.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 18%

188 Chapter 7 *« Programmers and Systems Analysts

Following Standards —
How Strict Should You Be?

When reviewing code, you discover that one of the programmers did not follow
the coding standards but otherwise their work is good. Do you make them
rewrite it or let it slide knowing it may cause someone else more work in the
future?

Conservative Your job as the code reviewer is to make sure applications
meet coding and security best practices. If the programmer knowingly failed
to implement company standards, they should expect to be required to
rewrite it after the code review. If you let one programmer get away with it,
they all will try and you will end up with quite a mess on your hands.

Liberal If the code is good and secure, there is no need to waste time and
money making the programmer rewrite it on principle. Instead, tell them in
a friendly way that you let it slide since it was such excellent code, but they
should review the programming standards set up by the department for
future use. There is no need to make a big deal of it, but have them try to
make the adjustment for the next project they work on.

SUMMARY

When deciding to enforce standards on programmers after a code
review, consider if the time and energy required will justify the changes
in the code. If so, require the programmers to go back and redo their
work to the department standards. If not, you may be slowing down the
entire project and creating a lot of enemies. Remember, the goal of soft-
ware development is to create the best possible program in a time effi-
cient manner. The only absolute requirements are that the program
performs operations according to specification and that it does not pose
a security risk to the system.

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 189$

Programmers and Systems Analysts « Chapter 7 189

Automated Code Review — Do
You Trust the Software or Yourself?

Automated code review includes the use of software applications to review pro-
grams. There are many tools on the market that perform this function. The fol-
lowing example discusses the ethical circumstance of relying exclusively on
automated code review. For instance, you use an automated code review tool to
review your own Visual Basic code. When you run the software on the code you
just built, it detects structural problems that will take you weeks to correct. You
are an expert in Visual Basic programming and personally do not trust automated
code reviews so you do not update your code accordingly. Did you do some-
thing wrong?

Conservative The purpose of an automated code review tool is to more
quickly find mistakes you would not otherwise find through a personal or
peer review. Research the recommended changes and implement them. It is
never appropriate to ignore the recommendations of any type of code
review.

Liberal You have determined that automated code reviews can be generic
and trust your expertise in Visual Basic programming. Why waste the time
and energy in implementing a structural change that is not necessary. The
automated tool may only be programmed to find one type of structure and
therefore be incorrect itself.

SUMMARY

Implementing an automated code review and following up on that
review with changes to your code has strengths and weaknesses. If you
know that the structural changes the tool is recommending are irrele-
vant you may decide to skip them. However, on the other hand, if you
do not know as much as you think you do and fail to implement
changes in your code based on the review, you may have a lot of extra
work to do in the future as well as set the project off of its deadline.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 19<¢

190 Chapter 7 *« Programmers and Systems Analysts

Code Design and Testing

The code design and testing phases of application development occur at opposite
ends of the life cycle development process. However, they are discussed jointly in
this section because they are codependent. Some IT departments perform testing
instead of code design and then rework the program at the testing phase. This
type of coding is known as “ad hoc development.” Other I'T departments per-
form ample code design and thus have minimum reworking to do at the testing
phase.

The subjects discussed in this section are skipping the design phase, ad hoc
development, and skimping on the test phase.

Skipping the Design Phase — A Bad Idea?

The design phase of programming is the structural program development. This 1s
where you lay out the process flow and overall feasibility.

You decide to skip a thorough design phase for your system because you hate
designing and love coding. Once you get to the testing phase, there are major
structural problems but the code is great. Do you go back and restructure it or
just write workaround code to make it usable?

Conservative You should have done the job correctly from the start of
your development efforts. Now that you have determined that skipping the
code design phase really does not work, you should go back and perform a
code design and rewrite your code so that it works correctly with a strong
architecture behind it.

Liberal It is too late in the game now to go back and rework the design of
the application. Write the appropriate workarounds that will make your
application function correctly. Based on this experience, you may want to
consider taking the time in your next development effort to work the kinks
out at the time of code design.

SUMMARY

Skipping phases of the software life cycle development process always
comes at a price. Unfortunately, the above issue is quite common in
software development. It tends to occur with the most talented com-
puter programmers who feel that they are beyond design.

Www.syngress.com

o

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 19$

Programmers and Systems Analysts « Chapter 7 191

Ad Hoc Development -
Is a Structured Plan Better?

Most organizations do not have time to fully implement a structured develop-
ment plan that utilizes best practices. Therefore, the unofticial standard at some
companies in regard to application development is ad hoc coding and then
deployment.

Your company is one such organization that develops on an ad hoc basis. You
know that this method of application development does not fulfill even the most
basic application system requirements. What do you do in this circumstance?

Conservative You should take the initiative to propose a full life cycle
development process to your manager and IT team. Writing code under the
current circumstances of your job will only generate future problems. You
will be thanked for your foresight.

Liberal Unfortunately, many development efforts occur in an ad hoc
manner. If you are working in an environment like this, you may choose to
go with the flow or set up a process for yourself to use that is more struc-
tured. Proposing an entirely different means for development eftorts may set
you at odds with the entire team and probably will not be implemented
anyway.

SUMMARY

When you work for a company that performs ad hoc application devel-
opment, you have the personal ethical choice to implement a more
structured means for your own development process. You also have the
choice to take it to the next level and share your process with the rest of
the team and/or management.

Skimping on the Testing
Phase — Is Automated Testing Enough?

The primary purpose for testing an application prior to its entry into production
is to verify security. Skimping on the testing phase can result in exaggerated
problems for the future of the application. Most departments do not spend
enough time testing applications prior to placing them in production.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 19¢

192 Chapter 7 *« Programmers and Systems Analysts

Sometimes this happens because the developer is used to their code and con-
fident in what they have written. Thus, they feel it is not necessary to test it.
Other times they just check for obvious errors and pass the application to the
deployment team. For these reasons, it is always optimum to have a different
person perform testing on a given application.

You have just completed an application that is a month overdue.You use an
automated testing tool to verify that it does not have any major bugs or security
weaknesses. Is automated testing enough or are you ethically required to perform
full testing?

Conservative Automated testing does not necessarily cover all of the
bases of human testing. It may cover different areas that human testing
misses. To properly complement automated testing, you should now perform
a peer test of the application. Have a coworker test the system for you.

Liberal Once you have completed automated testing, you have done your
job according to the company standards. It is not your responsibility to
enforce additional testing if that is not the company policy. It is not even
realistic to perform that testing given that the application was supposed to
be deployed one month ago.

SUMMARY

Going above and beyond the call of duty to ensure that your application
is as good as required is a personal decision. In most IT departments,
you will find a range of personnel from those who do the minimum just
to get by to those who are so thorough they slow the entire process
down. Finding the right balance of thoroughness and expediency is
important to a successful development process.

Programmers and Viruses

The intentional and unintentional introduction of viruses into development and
production environments requires significant ethical consideration. Viruses are
sometimes propagated through a development environment due to carelessness.
Programmers populate them in the production environment, when an applica-
tion either intentionally or unintentionally introduces them.

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 19¢

Programmers and Systems Analysts « Chapter 7 193

The following issues, including the correct use of company resources, propa-
gating viruses on the corporate network, downloading shareware, and malicious
attacks, ethically illustrate this concern.

Using Company Resources for
Continuing Education — What About the Risk?

The most common place to find computer viruses is a university technical lab.
The following issue addresses the ethical concerns of contracting a virus on your
corporate laptop by using company resources in a university lab. For instance:
You are a junior programmer at a start up company. You are attending night
school to finish your education in computer science.You use your company
laptop to perform homework assignments at the university lab, which puts the
laptop at risk. Is it appropriate to put company resources at risk in such away?

Conservative Even if you are pressed to use company resources for your
continuing education, it is not appropriate. Company resources are for com-
pany use only. Any use of the corporate laptop outside of company use is
not acceptable.

Liberal Since you are using your company’s laptop to further your educa-
tion in computer science, which will in turn benefit your company, this
type of use is acceptable. It would be different if you were using it for other
means.

SUMMARY

Using your corporate laptop outside of work is a sensitive matter. Many
businesses allow their developers to take their laptops home, especially
when the workload is large and they will be doing additional coding
outside of the office. The acceptable range of personal use for corporate
laptops varies from business to business.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 19%

194 Chapter 7 *« Programmers and Systems Analysts

Contracting a Virus and Propagating
It to the Network — Should You Confess?

This next issue follows up on the previous issue of the use of corporate
resources. The only difference is that in this case you have contracted a virus
from the university computer lab:

In addition to using company resources for your continuing education, you
unknowingly contract a computer virus. This occurred while you were working
in the computer lab at the university, which you know is prone to computer
viruses and worms. The virus proceeds to infect the entire network at work. Do
you tell your boss how you got it?

Conservative Taking your work computer to a computer lab at a univer-
sity when you know you are placing it at risk is just plain dumb and ethically
inappropriate. University computer labs are known for having every virus
imaginable and you were not ignorant to that fact. You made a huge mistake.

Tell your boss what you have done and any details you can remember
that may help them combat the virus, which has now attacked the corpo-
rate network. Pray that you do not cause too much damage.

Liberal Whait and see what happens. Maybe it is a simple problem and will
be handled quickly. If the computer virus seems to be complex, talk to your
teammates who are trying to fix it and explain what happened with your
machine. Maybe that will give them the knowledge they need to clean up
the virus without getting your boss into it.

Finally, reconsider whether you should go back to the university com-
puter lab in the future. It might not be worth your job.

SUMMARY

Admitting to propagating a virus on your corporate network can be
scary business. This is especially true if you have used company resources
potentially inappropriately. It is always best to tell someone if you know
how the virus was propagated, because it will help them fix the program
more quickly.

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 19%

Programmers and Systems Analysts « Chapter 7 195

Downloading Shareware —
Is There a Standard Policy?

A lot of programmers use shareware to obtain code that they would otherwise
have to spend a significant amount of time developing.

A programmer downloads shareware code from a non-trusted source to save
time developing the same code. They fail to share this action with the
Information Security Manager. Is this inappropriate behavior on the part of the
programmer?

Conservative This is highly inappropriate behavior and can affect the
integrity of the entire system. All shareware code downloads should be dis-
cussed with the Information Security Manager prior to any download. Your
company may also have a standard policy to not use shareware. This action
was done in ignorance.

Liberal If you have to run everything by the Information Security
Manager, you will never get any work done. There must be some trust for
you as a programmer, that you are knowledgeable about what you are
downloading. Programmers use endless shareware libraries. This is standard
practice in application development.

SUMMARY

Downloading shareware opens an entire box of ethical issues. In the one
addressed above, the programmer and the Information Security
Manager should set up a shareware standard in advance. If the
Information Security Manager is too stringent, the programmer will have
difficulty getting the job at hand done. This will consequently result in
an uncooperative relationship between the programmer and the
Information Security Manager.

Coding Attacks — Are They Ever Justified?

A malicious attack is designed to disable, obtain information from, or damage a
computer system. In terms of coding, the goal of an attack is to destroy or derive
information from a system. Most attacks result in an effect on the business, which
can have a negative impact on the image of the company or availability of services

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 19%

196 Chapter 7 *« Programmers and Systems Analysts

rendered. There two types of coding attacks that occur at difterent phases of the
application life cycle: architectural/design level attacks and implementation attacks.

The more difficult of the two to resolve are architectural and design. The
next level of attack is the implementation level. Implementation level attacks
occur at the coding stage. The code level vulnerabilities are the simplest type to
repair. What would you do in this next scenario?

You have a grievance with the company you are working for that has treated
you unfairly. Knowing that architectural level attacks are hard to find, you build
one into the system you are coding. Are you justified in this type of behavior?

Conservative It is never appropriate to perform any type of malicious
attack regardless of how unfairly you have been treated. In most cases, this
type of behavior moves you out of the ethical arena into the illegal.

Liberal Business is war. If you have been severely mistreated and have no
other recourse to take, you may consider this type of behavior. However,
with malicious attacks you must understand that you are venturing out of
the ethical behavior dilemma and into the illegal.

SUMMARY

Generating a malicious attack against a company you work for is dan-
gerous and not a very smart idea in general. Putting ethics aside, placing
yourself in greater risk by toying with the idea of a malicious attack
results in much worse consequences then just unfair treatment at the
office.

Programmer Security Responsibility

Determining the development security responsibility of a programmer is no small
matter. Information security touches many areas of application development
including application program interface (API) calls, Common Gateway Interface
(CGI) flaws, temporary fixes, disabling system warnings in macro development,
and using back doors. The following examples address each of these issues.

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page l97$

Programmers and Systems Analysts * Chapter 7 197

O 0|0 o]0 ©

O 0|0 Oj0 O

The Power of the Programmer

A programmer or a systems analyst effectively has more power than any
other user of computer systems. Programmers, through code, can change
the behavior of an operating system, modify the way other programs
work, or even change the way system hardware is configured or func-
tions. Overall, that is a very large responsibility to have.

So how do most programmers relieve the stress of responsibly
wielding this power or the stress of short deadlines and impossible pro-
ject goals? Easter eggs! An Easter egg is a little ‘surprise’ that a pro-
grammer has hidden within an application. It's usually a fairly small
amount of code the displays the programmer’s name in a unique way or
causes the program to act slightly differently than originally intended.

Are Easter eggs ethical? After all, they consume system resources,
take additional coding work, and are generally not bug tested as well as
‘official’ code. Look at it like this... Considering the power a programmer
wields and the things a programmer could do to a system, adding a
couple of Easter eggs is pretty harmless. | would much rather see the
name of the programmer displayed in twelve different fonts than have my
CD-ROM suddenly stop playing any CDs except for Pink Floyd music CDs.

Jeremy Faircloth
Systems Engineer and Author

API Calls and Security —
Finding the Right Balance

You are writing code that calls functions from the Windows API.You just assume
that the API is secure. Is it your responsibility to check this fact out and build
additional security into your error-handling routines if the Windows API does
not meet your company’s information security standards?

Conservative When developing code it is best not to assume anything.
Therefore, in the above circumstance, perform the necessary research to
ensure that the calls you are making to the Windows API will be secure on
both fronts by determining whether the API itself is completely secure.

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 19%

198 Chapter 7 *« Programmers and Systems Analysts

Liberal It is not your responsibility to check every Windows API function
to determine if it has the appropriate security and prevents risk. This would
result in an excessive amount of time spent on research that may not be
accurate anyway.

SUMMARY

When you are utilizing external interfaces and tools, you are posed with
potential security risks. If you take the time to check every external func-
tion or library you may never get your code written. Finding a proper
balance between getting your work done and ensuring security is up to
each software developer.

CGI Flaws — Who is Responsible?

A CGI 1s a predefined standard used for interfacing World Wide Web (WWW)
information and database servers with external software applications. CGI pro-
grams are common in Internet development work.You are writing CGI code for
a Web application in the perl programming language. You were not aware of a
corporate policy that involves checking input buffer lengths that can create a
security vulnerability. Consequently, the corporate Web server is attacked. You
wrote excellent code but did not properly check the input bufter lengths. Is the
attack your fault?

Conservative It is your responsibility as a programmer to familiarize
yourself with corporate standards, security practices, and policy. Therefore,
you are to blame for the security breach of the corporate Web server.

Liberal Many corporations do not fully communicate corporate policy
and standards. This communication is the responsibility of the project man-
ager or team leader. If there was a failure to communicate specific policy on
the part of the project manager, you are not liable for the security breaches
incurred because of it.

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 199$

Programmers and Systems Analysts « Chapter 7 199

SUMMARY

Determining responsibility due to a failure to follow corporate policy is a
common problem. In most cases, the programmer will take the heat
simply because they are lower than management on the totem pole.
Failing to implement security standards is a bit more serious because of
the implications to the business and system integrity. There are some
areas where programmers need to be more proactive; this may be one
of them.

Temporary Fixes — A Common Practice

A temporary fix 1s usually a workaround that makes a computer program func-
tion correctly but is not the optimum solution for the problem.The next issue
addresses the weaknesses and responsibility for implementing and updating a
temporary fix.

You are past your deadline and have a couple of fixes that must be imple-
mented in order for your code to run properly. Time is very tight so you apply a
temporary fix with the intention of creating a more secure fix when you have
more time to spend on it. Is it ever appropriate to implement an insecure tempo-
rary fix when the pressure is on for project completion?

Conservative It is never appropriate to implement a fix on a computer
program, even if it is temporary. A temporary fix can result in a breach of
system security. In the above circumstance, you should simply tell your man-
ager that the appropriate fix will take more time and consequently you will
not meet your deadline. If your manager tells you to apply the quick fix
explain to them that it will not work.

Liberal In a perfect world, it is always better to take the time to create a
secure program fix. The reality of computer programming paints a vastly
different picture then the ideal world. Sometimes there are aggressive dead-
lines that must be met, and it is common practice to implement patches
after a software release.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 20(¢

200 Chapter 7 *« Programmers and Systems Analysts

SUMMARY

This issue weighs the business realities against the technological
demands and the results of those high-pressured demands. The reality
concerning temporary fixes is that they are common practice. These fixes
are systematically followed up with software updates and patches. Some
of the most well known software companies in the world such as
Microsoft make this common practice in the case of operating system
patches that address security weakness.

Disabling Warnings in Macros — Not a Big Deal?

You are an Excel programmer and are annoyed with the system window pop-up
every time you open your Excel code, which says that macro viruses are possible
and asks are you sure you want to open this application. You decide to disable the
warning. Is it ethical to disable system warnings for your own expedience and
convenience?

Conservative It is always better to stay on the safe side and not disable
any system pop-up windows. They are there for a purpose and even if it
slows you down a bit, do not alter or remove them for your own conve-
nience.

Liberal As an Excel macro programmer, you have expertise in this area
and clearly know what you are doing. Disabling a pop-up window that is
simply annoying is not a big deal.

SUMMARY

Programmers adjust their systems on a regular basis to make their jobs
easier. Since they have more knowledge than the average user of the
operating systems they are conducting development efforts in, they may
know how to streamline simple system warnings to make their jobs
easier and more efficient. It is important to remember that sometimes a
little knowledge can be a very dangerous thing. If you decide to circum-
vent system pop-ups or other system procedures, be certain you know
exactly what you are doing.

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 20$

Programmers and Systems Analysts « Chapter 7 201

Using Back Doors — A Catch 227

Back doors are created by application developers to provide a way into the
system in case something goes wrong with the primary application. For example,
if the application locks up you will need a way to get in and free the system
resources. Without a back door, you cannot do this.

Knowing that it is a security risk to use back doors in your application devel-
opment, do you do it anyway because you know you will need to get into the
system via other means if a problem occurs? Is the creation of a back door
appropriate in this case?

Conservative Never put the system you are developing in at risk by
using back doors. It is as simple as that. If something does go wrong in your
application, it will be difficult for you to get in but not worth the security
risk you would otherwise impose on the system.

Liberal This issue is a catch 22 scenario. The security policy rightly states
that you should not use back doors when developing applications and this
makes complete sense. Back doors are a huge security risk. Nevertheless, if
there is a problem with the system, you will be required to quickly get into
it by some means to prevent major consequences, which requires you to
create a back door. As the programmer, you have to have a back door so
you create one knowing the risk.

SUMMARY

Back doors to applications are a significant security risk, but not being
able to get into an application is a serious development issue when a
problem arises. Speaking to your system administrator may give you new
ideas for handling this catch 22 situation. They may have alternate
means for handling this problem besides the use of a back door.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 20%

202 Chapter 7 *« Programmers and Systems Analysts

Cracking Passwords —
Should You or Shouldn’t You?

Cracking passwords occurs for malicious reasons as well as innocent ones. The
next issue discusses one such potentially innocent reason to crack the system
administrator’s password if you are a programmer.

You need to install your software onto the test box and the system adminis-
trator with the password is out sick. You can guess or crack the password of the
test box and therefore install your software. Is it ethical to do this?

Conservative You should wait until the system administrator returns to
work.You have not been given blanket access to the test box and therefore
you should certainly not try to crack the administrator’s passwords. If some-
thing goes wrong on that server, you will be the one held responsible.

Liberal Since you are under a tight deadline and can guess the system
administrator’s password, go ahead and get started on your work.

SUMMARY

If you cannot wait another day because you are under such a tight dead-
line, reference the employee address book and call the system adminis-
trator at home for the password and permission to use the testing box.
In most cases, they will not give you the password on the phone but
may be able to provide you with the appropriate privileges remotely so
that you can use the test machine under your own user identification.

Software Deployment — What is the Best Way?

Deploying software is the final step in the development process not including
ongoing maintenance. Within the area of deployment, the developer faces addi-
tional ethical concerns. One such concern is departmentalized deployment.

Departmentalized deployment is a means to deploy a recently developed soft-
ware application that isolates different departments, rolling out the software one
department at a time. This allows the development team to see how the new
software affects each department and their corresponding systems. This process
simplifies and provides easier isolation of problems and fixes.

Www.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 20¢

Programmers and Systems Analysts « Chapter 7 203

You know it is more secure to deploy software in a departmentalized
manner; however, you do not have the time so you roll it out all at once. Are you
wrong in doing this?

Conservative Deployment of software is a very important step in user
acceptance. If it 1s deployed in a rushed manner, it could potentially cause
an inconvenience for the users. They will not want to use the new system in
the future. This will stain the image of the new application. It is better to
take the time and deploy the new application in a departmentally structured

manner.

Liberal Again, we are faced with the reality of the software development
process against the ideal circumstances of development. Sometimes you do
not have the time because the system you built is needed immediately so
you must deploy and hope there are not any major problems. In addition,
global deployment can be somewhat protected by testing in a simulated test
environment that mirrors the development environment.

SUMMARY

The results of deploying applications all at once can pose a problem with
regard to user acceptance for that application. However, if all goes well,
it is @ non-issue. Only the developers and the testing team can make

this call.

WWWw.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 20%

204 Chapter 7 *« Programmers and Systems Analysts

Chapter Summary

In this chapter we discussed the ethical considerations of programmers and ana-
lysts. We defined programmers and analysts as the information technologists who
develop computer applications utilizing various programming languages. You
learned that there are many different titles a programmer can have, which iden-
tify whether they develop package software solutions, operating system functional
programs, or other forms of application development.
* In the conservative and liberal ethical responses, we reviewed bad and weak
coding practices. We included the ethics of code reviews comparing automated
reviews with peer and third-party reviews. You learned about the relationship
between programmers and malicious attacks such as viruses and stealing. You
learned how to ethically handle these circumstances. In addition, we considered
the ethical responsibility of keeping information systems secure when writing
code and the expected responsibility of the developer. Finally, we discussed the
ethics of application deployment, structured design, and testing.
This chapter thoroughly highlighted the ethical pitfalls of computer pro-
gramming, making you aware of what risks you could consider taking to speed
up production and what risks are simply not worth the results.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to get you thinking about the ethical circumstances you may face
when performing computer programming or systems analysis. Unless legal issues
are involved, then answers in the FAQ may not be the right answer for your orga-
nization. Some answers may be more ethical than others, but the true response
is up to you.

. = Q: What is bad code and.what.are the ethical ramifications of writing bad code?

A: Bad code is code written that does not fully take into account the technical
specifications provided and falls short of the application requirements. In some
cases, people who are not qualified for the work at hand write bad code.
Ethically speaking, if'a eorporation hires you to do a job, you should have the
appropriate capability to perform that function’in a time-efficient manner. If
you take a job that you are not qualified for; you can tarnish your reputation as
a programmer and influence the productivity of your department.

WWW.syngress.com

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 20%

Programmers and Systems Analysts « Chapter 7 205

Q: Describe the code review process including potential ethical pitfalls within
these processes.

A: The code review process is the phase in the software development life cycle
where checking of code occurs for security weakness and overall usability.
Ethical issues occur in the code review process when this step of the applica-
tion life cycle development is skipped or glazed over.

Q: What are the ethical responsibilities of computer programmers when it g *
comes to the generation of viruses due to their negligence? - o

A: Computer programmers have the unspoken responsibility to prevent virus
and worm infection on company resources. When programmers do not
handle their equipment in a diligent manner, they put the business at risk of
contamination. This carelessness can cause serious damage and impedes the
development process altogether.

a

Q: Do programmers carry the weight of security or is this just the role of the
Information Security Officer?

A: All personnel within a corporation should be security conscious. This is espe-

1
™

L

cially true of computer programmers. When developers implement insecure
code or back doors, they put the company at risk. It is up to the program-
mers to calculate if the risk is necessary given the application requirements.

Q: In application deployment is there an ethical requirement of the developer to
perform deployment in a certain manner?

A: The answer to this question is heavily dependent upon the expected project
deadlines and physical deployment environment. In some cases, global deploy-
ment is necessary and can be somewhat protected by testing in a simulated test
environment that mirrors the development environment. In other circum-
stances, avoiding departmental deployment out of laziness can be disastrous.

290_Ethics_IT_07.gxd 5/10/04 11:53 AM Page 20%

206 Chapter 7 *« Programmers and Systems Analysts

Q: As a developer, are you required to follow a code design process, or is it
acceptable to handle coding errors in the testing phase of application
development?

A: Again, this question depends on the environment of the IT department and
their expectations. The code design process does circumvent future reworking
of the code at the testing phase. However, your technical lead may not

require or desire you to perform a code design phase within the development
life cycle.

www.syngress.com

